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ABSTRACT

Consider the two-factor nested components of variance model

Y = p + A. + Bij + C where Var[Ai = a, Var[Bij] =
ujk ijk i A±k ]j B%

Var[C ]=o2VaKij k S = '

Confidence intervals are derived for a2/a2 , 2/(a2 + a2 ) andA C 'A A C
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1. Introduction

Consider the two-factor nested components-of-variance model given by

Y = V + Ai + Bij + Cij k  for

1 1, 2, . > 1; J 1, 2, ... , J > 1; and k 1, 2, ... , K > ;

where E[A] 0; Var[Ai] = ; E[B] 0; Var[B 2 ; E[C 0;
i ij ij B' ijk~ 0

and Var[C ] G2. The random variables Y are observable; the
ijk C ij k

random variables AI ..., A1 ; BI1, ... , B1 ; C1 11, ... , CIJK are

pairwide uncorrelated and unobservable and are jointly normally distri-

buted; v, a2, G2 , and o2 are unobservable parameters. The parameter
A' B' C

space 0 is defined by

' - 00 < 2 , ao 0,
SI-{ (I CTA2 a B aC < A Bi CO , 1O.

These specifications define a two-factor nested components-of-variance

model with equal numbers in the subclasses and the ANOVA table is displayed

in Table 1.

Table 1.

ANOVA table for two-factor nested components-of-variance model
with equal numbers in the subclasses

Source d.f. S.S. M.S. E.M.S.

Total IJK ZZy2

Mean I IJl&2

Factor A n= I-1 Zyfi.._. )2 S2  el c12+Ka2+JKa2

- 1 11 C B A

B within A n2  I(J-1) EZE(Yij.-Y i )2  S2 a

Error n3 = IJ(K-l) EZE(YijkYi,)2 s2 e C1

3 jkyj.7 3 3 CI.

- j . , I-1-



In this model there are several functions of the variance components

that may be of interest in applied problems. These include

02 02 a2 a2/(02 + 0F2), a2/(02 + 02), o2/ (2 + a2 + o2) o2g/a2 + 2 + 2),IA' B' C' C C B C C A'A A B C'B A B C'

and A/(a2 + G2 + 02). The only functions of o2, oa2 2 given above for

which an exact size confidence interval exists is a2 and a/C2+ a)

oCo C C )B
Approximate size confidence intervals for o2 and a2 have been given by

Moriguti (1954), Bulmer (1956) and Howe (1974). Approximate size confidence

intervals for a2/(02 + 02 + a2), a2/(02 + 02 + 02) and 02/(02 +02 +02) h ave
A A B C' B A B C C AB C

been given by Graybill and Wang (1979). In this paper we give approximate size

confidence intervals for a2/(a2 + 02), a2 /(2 + a2), a2/U2 and 22
C A C A A C A C C/A.

Actually we obtain approximate size confidence intervals for oa2/o2 only
A C

since O/oA, o/(o + o2), and o/(o + 02) can be obtained from these.

In Section 2 the lower limit of the upper confidence interval is derived,

in Section 3 the upper limit of the lower confidence interval is given, and

in Section 4 is a short discussion of other methods that could possibly be j

used for confidence intervals on a/C2

-2-
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2. Lower Limit of the Upper Confidence Interval on A/02
A -

Since Y ..., S2, S2, and S2 are complete sufficient statistics for this
1' 2' 3

problem, we will require the upper confidence interval to be a function of them.

Write
eI -e 2

(y ....,S 2 , S2 S2) < 2~ 2<C
1' 2' 3 3

for the 1 - a upper confidence interval where the function g(Y ..., S,2,S32 2)
1' 2' 3

the lower confidence point, is to be determined.

.1- 62 JKa2
Using the notation in Table 1 observe that 1 = s an upper

e1 _ 2 83 C s
confidence interval on is equivalent to an upper confidence interval on

63
* a2/y2.

A C

Since a2/(a2 + C2) is a function of 61, e2 , 6 only, this is unchanged
A A + C'

if any constant c is added to Y Jk in the model given in Section 1. Thus

the lower confidence point g(y ... S2, S2, S2) should also be unchanged if c
1' 2' 3

is added to Y Let c--...; thus ... +c is zero and S2, s2, s2
i k' 1' 2' 3

are unchanged when YiJk is replaced by Yijk + c (or specifically by Yijk - "

Hence g(y ... , s2, , S2 ) becomes g(O s2  S2, S2) and the lower confidence
1 2 3 1 2 3

point is a function of S2, S2, and S2  only. So the objective is to find a
1' 2' 3

function of S, S2 , 2 say f(S2  2, S2) such that
1' 2' 3 1' 2 3

P[f(S2, S2, S2) < (e/ - e I

is approximately (and very close to) equal to a specified number 1 - a.

If Yi k is rcplcc.1 by cYIj k  for c 0 0, thcn (61 - /) 3 is

unchanged. Thus we require f(c2S2 , c 2 S2 , c 2 S2 ) - f(S 2  S2, S2). Let
2f( 2 1 2 3 2 1 2 3 2

c2 - 1/S2  then fs' S, S2) f(S2/ 2  1, S2/S2) - h(S2/s2, S2/S2), so

the lower confidence point of (e1- 62)/e3 is a function of S1/S 2 and S3/S2  only.

~~ - 2 3 ... ,2 3 2 i ,=

'1 __ ____-3-



of 1 -02 e/e2 io t
Since the maximum likelihood estimator of 3 2s of thee3  31e 2

4 S2 - S S/S 2 -I

form 1 2 1 2 P we require h(S2 /S2, S2/S 2 )  to be
s2/s2  1 2 3 t

3 32

(a) monotonic increasing in S2/S2; (b) monotonic decreasing in S2 /S2 ,
1 2' 3 2

s1 2
Let 0 - , then from Mood et al. (1974, p. 180).s2

3

s-s2 2n2  02 2n2  02

1 2° 3 3
Var() - Var( ). 32

S2 n(n- 2)2 ()2 n2 (n3 - 2)2 0

2n2  /0 0\2 4n2 62
+3 + -1(n3 - 4)(n 3 - 2)2 03 63  nl(n3 - 4)(n 3 - 2)2 02

4n2 02

n2 (n3 -
4)(n - 2)2 2

If we replace the 0i by UHVU estimators and denote the resulting Var(O)

by Var(6), then Var() -c S/S 4 + c S4 /S4 + (c S2/S2 - c S2/S2 )2  where
1 1 3 2 2 3 3 1 3 4 2 3

ci, c2, c3 and c4  are appropriate constants which are functions of nl,

n2, and n3 .

-4-



e -e
So a large sample lower confidence point for 1 is

eN-1 2 N{C S4/S 4 + C 4S + (C S2/S2 - C S2 /S 2 ) 2
s2 a 11 3 2 2 3 3 1 3 4 2 3

38

S2 r22

Theefre i2 Neea {c require 2h owrcnieepinh 22 2 SI2,

of 3O 1eof he fom $c (S /S) + c + (C hS/S2 - ]

S2
2

S2 -1 2
3

where N is the upper a probability point of a standard normal p.d.f.

Therefore, in general we require the lower confidence point, h(SInSw, Se/SH),

1 28 3S2

of to be of the form 2 q (S/ 2), and we determine the function

3

q(S2/a2) such that
1 2

2 0 -
PC 2L q(S2/s2) < 1l 2) (2.1)

"1 2 
1 

63

is close to 1 - a. We require q(S2/S2) to satisfy (1), (2), (3) below.

" -~~ ~ 2,JI'

(1) When the hypothesis H : a2=_0 vs. H : a2 >0 is accepted for a size
0 A a A

a test the confidence interval should include zero, and when H 0is

rejected, h(S2/S2 , S2/S 2) should be an increasing function of S2/S2.
1 2' 3 2 1 2

*To test HO: a2 -0 vs. H : 02 >0 the hypothesis HO is accepted if
A a A0

and1 onl ifa/~< : n1,n 2  (This test is uniformly most powerful

unbiased). Thus

Arh(S 2/S2, S2/S2) _ 0 when S/iih(62IS2, S2IS2) > 0 and increasing in S2/S2  when S2/S2 > p
12 321 2 1 2 a: n 1, 2

-5-



2
Since h(S 2 /S2  S2 /S 2) S2~ q (S2/) weoti

1 2' 3 2 s2  1 /2) eoti
3

q(S 2 /S 2 ) - 0 when S2/S2 < F1 2 1 2- a: n,

q(S2/S2) > 0 and increasing in S2/S2  when 2 2
12a 2 : nl,n2

(2) When J (hence n2 + and n3 + ®) the confidence interval will be

required to have an "exact" confidence coefficient I - a. When J it

follows that n + 1 and n - 0 and from this it follows that S2  6 2 in2 3 2 2

probability and S2 _ a in probability. Start with
3 3

P['F < el 1 I- a

a:n

and use the result of J- -all i.e. replace S2 and S2 by their "equivalent"

values 62 and 83 respectively, to obtain

2e 3S2  s2 8

P["2 1 < 2 2
S2 S2F 3l, -1-ct
3 2 a: nil

Hence when J +

q(S2/S2)- o when s2/52 F .
S22-

q(S2/S2) .- 1-1 when S2/S 2 > F 0
1 2 z 1 2 a:2hn lS 2a:n,

To -O 2

(3) If U 2 ,the quantity is dominated by e1/0 and we

3
want

S2  2

P2 11
S .2 S2F e3
3 2 a: ni n 3

to be equal to 1 - a. This requires q(S2/S2) to behave like

S2/S2 Fat: ni for large S/ in the sense that

s2
q(Si/S2) { 1 + t(S2/S2)) where

12 S2-F12
2 a: nl, n3j ______...... ..... __,__________-- ____

-
__________

-6-,_.. .. ___-,________IIII__



7

I (S2 /S 2) *0 as S28
121 2

Any function q(S2/S2) satisfying conditions (1), (2), (3) will give an

exact confidence coefficient in the three limiting cases 1 -1, /- 2

and J o.

The simplest function satisfying those conditions is the linear function

q(S2/S2) S2'S2 +b wherea and b are functions of n19n,n n and a

and are determined by the conditions (1), (2), and (3). However, this did not

give results as good as desired so a more general function was used, namely

q(S2/S2) [aS2S + b~ +n S/2- / (2.2)
SnI , 3

From condition (3) a1 - 1.

From condition (2) b1 (nl, cos ) - - F : n. W: c1 (nI, Is C ) . 0

From condition (1) F + b1 + c /Fa  ,  2 0 or

a: ni, n2  a: n, n2

Let b1 (n., n n3) - Fa: for all n2  and n3, then

c F 2(F n ), and

1 a:n, nI  F a: nI , n2

q(S2IS2) -SS F: + F (F -00 F )S 21S2]/F
1:nl,l ,nn a:n a:n 5n 2 1 ct:nl,n 3

Thus a 1 - a upper confidence interval on (01- 02)/63 is L2 ! (01 -02)/63 <

where L2 is defined by

L - if S21S2 < F (2.3)I'~ 21 -;n~+Ftn( ~ a n In 2Z
L2  - 2  

2
/S 2  -F 2 :

2 S2 F:n I + F sx/s FInn(F + , '0n - F ,~n,n 2  3

if SI/S 2 > :n F



Note that L = 0 if and only if the a level test of H o2 . 0
2 0 A

is accepted, so P[L 2 = 0] P[S2/S2< F ]< - a and P[L 2  0]= -a

if and only if a2 _ 0. The probability associated with Equation (2.3) is a function
A

of the unknown parameter p - 01/2 and is exactly equal to 1 - a when P is one

or infinity or when J is infinite.

The excellence of this approximation is indicated by Table 2,calculated by

simulation. Columns 7, 8, and 9 of Table 2 contain the range of probabilities of

L (81 - 02)103 as the unknown parameter 01/02 varies from I to -. The

approximation appears to be quite satisfactory even for small sample sizes.

The remainder of this section is devoted to the study of the behavior of
s2 61- 02

s{i q(S-/S2) <01 2 ] for all values of n., n2 and n3 . From Table 2

P appears to get closer to I - a as the value of K (hence n3 ) increases.

In fact as K - (hence n3  =) the problem is reduced to the interval

estimation of a2 in the one-factor model and the method discussed in this
A

section is equivalent to Moriguti's method (1954). From this one knows that the

error in P is of the order n- 2 , i.e. P = 1 - a + 0(n2  ). Another way to

examine the behavior of P is to expand P in powers of n2  1 and n 3  1

The algebraic details of this work are heavy (see Bulmer (1957)). The resulting

expansion is

P 1-a + a 0 + a 1 2 /n2 + a 1 3 /n3 + a22 /n2 + (I3/n

+ 23/n n3 + 0(n-2 , n- 3).
232 3 2' 3

This assures that as the values of J and K (hence n2 and n3) increase

the accuracy of the approximation gets better.

In Table 2, P is between 0.9500 and 0.9597 when I - 3, J - 3, K = 3,

and 1 - a - 0.95 and when I = 7, J - 3, K - 3, P is between 0.9500 and 0.9581.

A study of the values of P when I is large (nl, n2, and n3  are large, but

R 1 2' R2  n n/n remain constant) is in Wang (1979).

1 -8- 1



3. Upper Limit of the Lower Confidence Interval on ol

_____ 01
Since P~E1 -2 < f(S2,S2S2)] - I p[f(S2 S2 S2) < 1 2

3 1 ,2S3)  3 , we use
3 3

the confidence coefficient a in the lower limit of the upper confidence

interval in Equation (2.3) to obtain a lower 1 - a confidence interval

on (61 - 62)13 given by O< 01 - 02)/ E3) U where

s2

U 2 [ 2 - F + F (F -F 2/21
SS/S2  Fla:nl, l-ta:nl,n 2  l-a:n,c- l-a:nln 2 /

S2F1 1= 2 +'2)' S]

3 1 nln 3

if S2/S2 > (3.1)1I/ 2 > Fl_:nl~n 
2

U= 0 if S2/S2  F
1 2 < l-a:n,,n 2

We could determine how close the confidence coefficient of this confidence.

interval is to the nominal i-a by simulation. However, due to the expense

of computer simulation we chose a different route. We used qI(S2/S2) = a S2/S2 + b
1 12 1 1 2

and conditions similar to (1), (2), (3), of Section 2 to obtain the confidence

interval 0<(E1-62)/83 < U1 , where U1  is given by

U - 0 if 52/S2 < F (3.2)
11 2 - F-a:nnl2

S2

U -.2. (S2/S2F1  -n ~F ~ 1 n/F1ann) if S2/S2 l.an

32

Note that UI W 0 and U 0 if and only if the 1 -a level test of H :  2 0
1 0 A

is accepted. Also note that conditions (2) and (3) of Section 2 are satisfied

by the confidence intervals given in Equations (3.1) and (3.2).

-9-



The probability associated with Equation (3.2) depends on the value of

P ) 1/8, nl,n2 ,n3 and can be easily calculated if n I  is even; we get

61 6~S
2

pE 1 2 _ 22 IF6 3 S2 (S/SF-a:n'n 3 -- :nn 2/Fl-a:nln 3]

n n/2 n n/2 nl/2-1

- 1 2 /21 3 12 c d+l1 - -E[ (#-1)U2 + (-J+I]) U3Y

y=O y!2y

where c = RFI :n,n 2 /p, d - (p-l)R1R2 Fl_a :nn3/P (seeWang (1979)).

The results of the probabilities of (61-82 )/03<_UI are given in Table 3

for various values of I, J, K and for 1-a = 0.09, 0.95, 0.99. The actual

probabilities are quite close to the specified probabilities even for small

sample sizes. We expect the results to be even better if the more general

confidence interval O<(El - 82)/03 < U is used where U is given in Equation

(3.1).

4. Comparison with Other Methods.

The literature does not contain any references that have been evaluated and

directly relate to confidence intervals on a2/a2 . Perhaps Satterthwaite's (1946)
A C

method could be used but this procedure is extremely poor when used to place

confidence intervals on the difference of expected mean squares (i.e. on (01-2)/03

A/02 ). Broemeling (1969) presents a method for placing simultaneous

confidence intervals on a2/a2 and a2/02.. This method can be used to place con-
A C B C

fidence intervals on A2/G2 -
AC'

We use Equation (15) in Broemeling (1969) to obtain

P[0< K J a2/02  < S2 /S2  F Ln) 2(1 (4.1)

A C 12 1L 3

-10-



which can be used for a lower confidence interval on KJaO2 /02 with confidence
A C

coefficient greater than or equal to (1 - 0)2
. Clearly the 1 - a lower

confidence interval in Equation (3.2) above is shorter than the (1 - 0) 2

confidence interval in Equation (4.1). Thus the confidence interval on

a2/02 derived from the procedure by Broemeling is not as good as the method pre-
A C

sented in this paper.
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